Ocean boundary pressure: Its significance and sensitivities

Andrew Styles¹, Emma Boland¹, Chris Hughes²

¹ British Antarctic Survey, UK

² University of Liverpool, UK

3rd September 2024

An eddying ocean

Ocean turbulence (2km resolution) Su et al. (2018)

An eddying ocean

In the ocean interior:

- Eddies dominate the variability almost everywhere [1]
- Particular sources of variability hard to disentangle from the eddy field
- Non-linear eddy interactions mediate currents on a timescale beyond the lifetime of a single eddy ^[2]

[1] Wunsch (2008)

[2] Close et al. (2020)

Another approach?

Ocean turbulence (2km resolution) Su et al. (2018)

Another approach?

Boundary pressures:

- Can describe variability of **global currents** such as the AMOC ^[3]
- Interannual to decadal variability is coherent over long distances (~10⁵ km) ^[3]
- Boundary and equatorial waves provide high-speed pathways (~1 m s⁻¹) to connect the basins on a timescale < 1 year ^[3,4,5]

[3] Hughes et al. (2018) [4] Hughes et al. (2019)

[5] Marshall & Johnson (2013).

Boundary Pressure Structure

Explained variability of the MOC

NEMO (ORCA12) Eddy-rich forced model 54-year time-average

 $fT(z,y) = p_E - p_W$

MOC calculation from geostrophic assumptions

Figure 17 from Hughes et al. (2018)

Timescale

Adjoint models

- Adjoint models effectively run "backwards"
- Relate **ocean behaviors** to **physical causes** in the past via automatic differentiation
- Identify the linear sensitivities of an objective function

Adjoint models

- Adjoint models effectively run "backwards"
- Relate ocean behaviors to physical causes in the past via automatic differentiation
- Identify the linear sensitivities of an objective function

Objective function for pressure difference

- Select 2 clusters of boundary grid points (e.g. figure)
- Select a time window (e.g. $Jan \Rightarrow Dec 2008$)
- Bottom pressure within each cluster is spatially and then temporally averaged (e.g. \overline{P}_{NW} , \overline{P}_{NE})
- The adjoint model calculates the linear sensitivities of each mean pressure to:

Example clusters in the NW Atlantic (Red) and NE Atlantic (Blue). Both clusters contain grid points with depths <= 3000 m within the approximate global 3000 m isobath

Sensitivity field: Zonal winds stress

-10⁻⁵010⁻⁵

Remember that sensitivity is a function of lag also

The shown sensitivity is for a value of lag where the pattern is **particularly strong**

 $[m^2 s^{-2}] / [N m^{-2}]$

Sensitivity field: Meridional Wind Stress

-10⁴0⁻⁵

Remember that sensitivity is a function of lag also

The shown sensitivity is for a value of lag where the pattern is **particularly strong**

[m² s⁻²] / [N m⁻²]

Reconstructions

 The sensitivity fields can be convoluted with forcing anomalies (relative to climatology) to reconstruct a pressure anomaly time series

 In this reconstruction we assume the sensitivity is stationary (does not depend on absolute time)

'All in' reconstruction

$$\mathcal{R}(t) = \sum_{i} \iint_{A} \int_{t_{1}}^{t_{2}} \mathcal{A}_{i}(\boldsymbol{x}, t') \, \Delta \mathcal{F}_{i}(\boldsymbol{x}, t+t') \, dt' \, dA$$

Reconstruction using all forces ($\forall i$) and all available lag ($t_1 = -5$ yrs, $t_2 = 0$)

Explained variability

Explained variability describes how much of the desired variability is captured by a reconstruction

$$E_i = 1 - \frac{\operatorname{Var}(\mathcal{J} - \mathcal{R}_i)}{\operatorname{Var}(\mathcal{J})}$$

If E = 1 the variability is reconstructed perfectly If E < 0 the reconstruction is worse than assuming a constant value

A reconstruction can be modified by including **different forces** and different amounts of lag (**memory**)

Identifying the optimal combination of forces and memory indicates the **relevant forces** and **timescales**.

Explained variability

$$E_i = 1 - \frac{\operatorname{Var}(\mathcal{J} - \mathcal{R}_i)}{\operatorname{Var}(\mathcal{J})}$$

Forcing

Zonal wind stress Meridional wind stress Heat flux Freshwater flux Along-slope winds Down-slope winds All wind stress All forces

Where is the remaining variability?

- Longer lags may be necessary (> 5-year memory)
- Non-linear sensitivities of the pressure difference may also be significant
- Assuming sensitivities are stationary may also produce errors

Where is the remaining variability?

 Longer lags may be necessary (> 5-year memory) **Extend adjoint runs** to 10-20 years

 Non-linear sensitivities of the pressure difference may also be significant

Perform forward perturbation experiments

 Assuming sensitivities are stationary may also produce errors Calculate **sensitivities** centered on a **different time**

Conclusions

- Components of variability in large scale circulations (e.g. AMOC) can be described by boundary pressures.
- Using an adjoint model, we can reconstruct 72% of the pressure difference variability in the North Atlantic
- Most of the explained variability originates from along-slope winds

Thank you for listening

Follow me on Twitter! @AndrewFStyles

Ocean turbulence (2km resolution) Su et al. (2018)

C C C

Download the slides here!

[1] Wunsch, C. (2008). Mass and volume transport variability in an eddy-filled ocean. *Nature Geoscience*, 1(3), 165–168. <u>https://doi.org/10.1038/ngeo126</u>

[2] Close, S., Penduff, T., Speich, S., & Molines, J.-M. (2020). A means of estimating the intrinsic and atmospherically-forced contributions to sea surface height variability applied to altimetric observations. *Progress in Oceanography*, *184*, 102314. <u>https://doi.org/10.1016/j.pocean.2020.102314</u>

[3] Hughes, C. W., Williams, J., Blaker, A., Coward, A., & Stepanov, V. (2018). A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation. *Progress in Oceanography*, *161*, 19–46. <u>https://doi.org/10.1016/j.pocean.2018.01.011</u>

[4] Hughes, C. W., Fukumori, I., Griffies, S. M., Huthnance, J. M., Minobe, S., Spence, P., Thompson, K. R., & Wise, A. (2019). Sea Level and the Role of Coastal Trapped Waves in Mediating the Influence of the Open Ocean on the Coast. *Surveys in Geophysics*, *40*(6), 1467–1492. <u>https://doi.org/10.1007/s10712-019-09535-x</u>

[5] Marshall, D. P., & Johnson, H. L. (2013). Propagation of Meridional Circulation Anomalies along Western and Eastern Boundaries. *Journal of Physical Oceanography*, *43*(12), 2699-2717. <u>https://doi.org/10.1175/JPO-D-13-0134.1</u>

Extra Slides

wnd: Explained Variability

$$\mathcal{R}_i(\boldsymbol{x},t) = \int_{t_1}^{t_2} \mathcal{A}_i(\boldsymbol{x},t') \, \Delta \mathcal{F}_i(\boldsymbol{x},t+t') \, dt'$$

$$E_i(\boldsymbol{x},t) = 1 - \frac{Var(\mathcal{J} - \mathcal{R}(\boldsymbol{x},t))}{Var(\mathcal{J})}$$

Sensitivity field: Heat flux

Remember that sensitivity is a function of lag also

The shown sensitivity is for a value of lag where the pattern is **particularly strong**

[m² s⁻²] / [W m⁻²] -10⁻⁷ -10⁻⁸ 0 10⁻⁸ 10⁻⁷

Sensitivity field: Freshwater flux

Remember that sensitivity is a function of lag also

The shown sensitivity is for a value of lag where the pattern is **particularly strong**

[m² s⁻²] / [m⁻¹]

 -10^{-1} -10^{-2} 0 10^{-2} 10^{-1}