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In the ocean interior:
• Eddies dominate the variability almost everywhere [1]

• Particular sources of variability hard to disentangle 
from the eddy field

• Non-linear eddy interactions mediate currents on a 
timescale beyond the lifetime of a single eddy [2]

[1] Wunsch (2008)
[2] Close et al. (2020)
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Boundary pressures:
• Can describe variability of global currents such as the AMOC [3]

• Interannual to decadal variability is coherent over long 
distances (~105 km) [3]

• Boundary and equatorial waves provide high-speed pathways 
(~1 m s-1) to connect the basins on a timescale  < 1 year [3,4,5]

Another approach?

[3] Hughes  et al. (2018)
[4] Hughes et al. (2019)

[5] Marshall & Johnson (2013).
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• Adjoint models effectively run “backwards”

• Relate ocean behaviors to physical causes in the past 
via automatic differentiation

• Identify the linear sensitivities of an objective function

Adjoint models
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• Adjoint models effectively run “backwards”

• Relate ocean behaviors to physical causes in the past 
via automatic differentiation

• Identify the linear sensitivities of an objective function

Adjoint models

𝒥
Objective function
e.g. Mean pressure
difference between

 two regions

Adjoint Model
ECCOv4r4

𝜕𝒥
𝜕ℱ!

,
𝜕𝒥
𝜕ℱ"

, …

Linear sensitivities
Sensitivity of 𝒥 to external forces

Depends on position and lag
 

2 yr lag



• Select 2 clusters of boundary grid points (e.g. 
figure)

• Select a time window (e.g. Jan ⇒ Dec 2008 )

• Bottom pressure within each cluster is spatially 
and then temporally averaged (e.g. $𝑃!" , $𝑃!# )

• The adjoint model calculates the linear 
sensitivities of each mean pressure to:

Objective function for pressure difference
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Example clusters in the NW Atlantic (Red) and NE 
Atlantic (Blue). Both clusters contain grid points with 
depths <= 3000 m within the approximate global 3000 
m isobath
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Sensitivity field: Zonal winds stress

Positive values
Increasing zonal wind stress 
increases pressure difference (𝒥)

Remember that 
sensitivity is a 
function of lag 
also

The shown 
sensitivity is for a 
value of lag where 
the pattern is 
particularly strong

[m2 s-2] / [N m-2]



Sensitivity field: Meridional Wind Stress

Positive values
Increasing meridional wind stress 
increases pressure difference (𝒥)

[m2 s-2] / [N m-2]

Remember that 
sensitivity is a 
function of lag 
also

The shown 
sensitivity is for a 
value of lag where 
the pattern is 
particularly strong



• The sensitivity fields can be convoluted with forcing anomalies 
(relative to climatology) to reconstruct a pressure anomaly time 
series
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• In this reconstruction we assume the sensitivity is stationary (does 
not depend on absolute time)

Reconstructions

Reconstruction of 
the pressure 
anomaly at time 𝑡 for 
the force ℱ&

Approximate 
sensitivity of the 
pressure anomaly to 
forcing at time 𝑡 + 𝑡′

Forcing anomaly 
at time 𝑡 + 𝑡'
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Reconstruction using all forces ( ∀𝑖 ) and all available lag ( 𝑡& = −5yrs, 𝑡' = 0 )

‘All in’ reconstruction
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Explained variability describes how much of the desired variability is 
captured by a reconstruction

𝐸1 = 1	 −
Var 𝒥 − ℛ1
Var 𝒥

A reconstruction can be modified by including different forces and 
different amounts of lag (memory)

Identifying the optimal combination of forces and memory indicates the 
relevant forces and timescales.

Explained variability

If 𝐸	 = 	1 the variability is reconstructed perfectly
If 𝐸	 < 	0	the reconstruction is worse than 
assuming a constant value



Explained variability

Forcing
Zonal wind stress
Meridional wind stress
Heat flux
Freshwater flux
Along-slope winds
Down-slope winds
All wind stress
All forces

𝐸& = 1	 −
Var 𝒥 − ℛ&

Var(𝒥)

Increasing memory

Approximately 72% of 
variability explained by 
reconstruction

Most of the explained 
variability originates from 
along-slope winds

Buoyancy forcing explains 
little variability



• Longer lags may be 
necessary ( > 5-year 
memory)

• Non-linear sensitivities of 
the pressure difference may 
also be significant

• Assuming sensitivities are 
stationary may also produce 
errors

Where is the remaining variability?
Forcing
Zonal wind stress
Meridional wind 
stress
Heat flux
Freshwater flux
Along-slope winds
Down-slope winds
All wind stress
All forces

Sensitivity window
(5 years)



• Longer lags may be 
necessary ( > 5-year 
memory)

• Non-linear sensitivities of 
the pressure difference may 
also be significant

• Assuming sensitivities are 
stationary may also produce 
errors

Where is the remaining variability?

Extend adjoint runs to 10-20 
years

Perform forward perturbation 
experiments

Calculate sensitivities 
centered on a different time



• Components of variability in 
large scale circulations (e.g. 
MOC) can be described by 
boundary pressure differences.

• In this case study, we can 
reconstruct 72% of the pressure 
difference variability in the North 
Atlantic

• Most of the explained variability 
originates from along-slope 
winds

Conclusions
$𝑃!"

$𝑃!#  



Download the 
slides here!

Follow me on Twitter!
@AndrewFStyles

Ocean turbulence (2km resolution) Su et al. (2018)

Thank you for listening
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Explained variability of the MOC

Figure 17 from Hughes et al. (2018) 
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Explained variability of the MOC
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Explained variability of the MOC
NEMO (ORCA12) 
Eddy-rich forced model
54-year time-average
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𝐸 𝑧, 𝜙 = 1	 −
Var 𝑉 − 𝑉()*

Var(𝑉)
Explained variability 

Variability of the MOC 
is well-explained by 

Bottom Pressure 
differences
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Sensitivity field: Heat flux

Positive values
Heat flux out of the ocean increases 
the pressure difference (𝒥)

[m2 s-2] / [W m-2]

Remember that 
sensitivity is a 
function of lag 
also

The shown 
sensitivity is for a 
value of lag where 
the pattern is 
particularly strong



Sensitivity field: Freshwater flux

Positive values
Freshwater flux out of the ocean 
increases the pressure difference (𝒥)

[m2 s-2] / [ m-1]

Remember that 
sensitivity is a 
function of lag 
also

The shown 
sensitivity is for a 
value of lag where 
the pattern is 
particularly strong


