# Ocean boundary pressure: Its significance and sensitivities

Andrew Styles<sup>1</sup>, Emma Boland<sup>1</sup>, Chris Hughes<sup>2</sup>

<sup>1</sup> British Antarctic Survey, UK

<sup>2</sup> University of Liverpool, UK

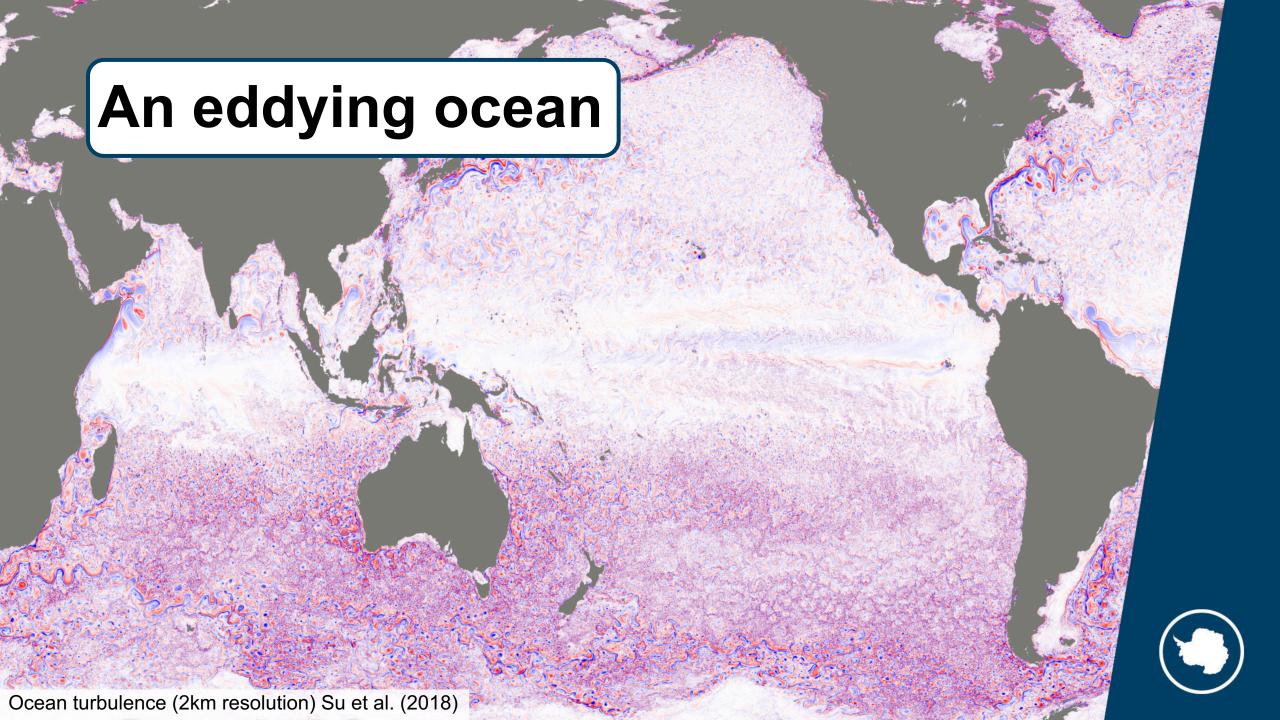
21st October 2024 – TACOMA meeting









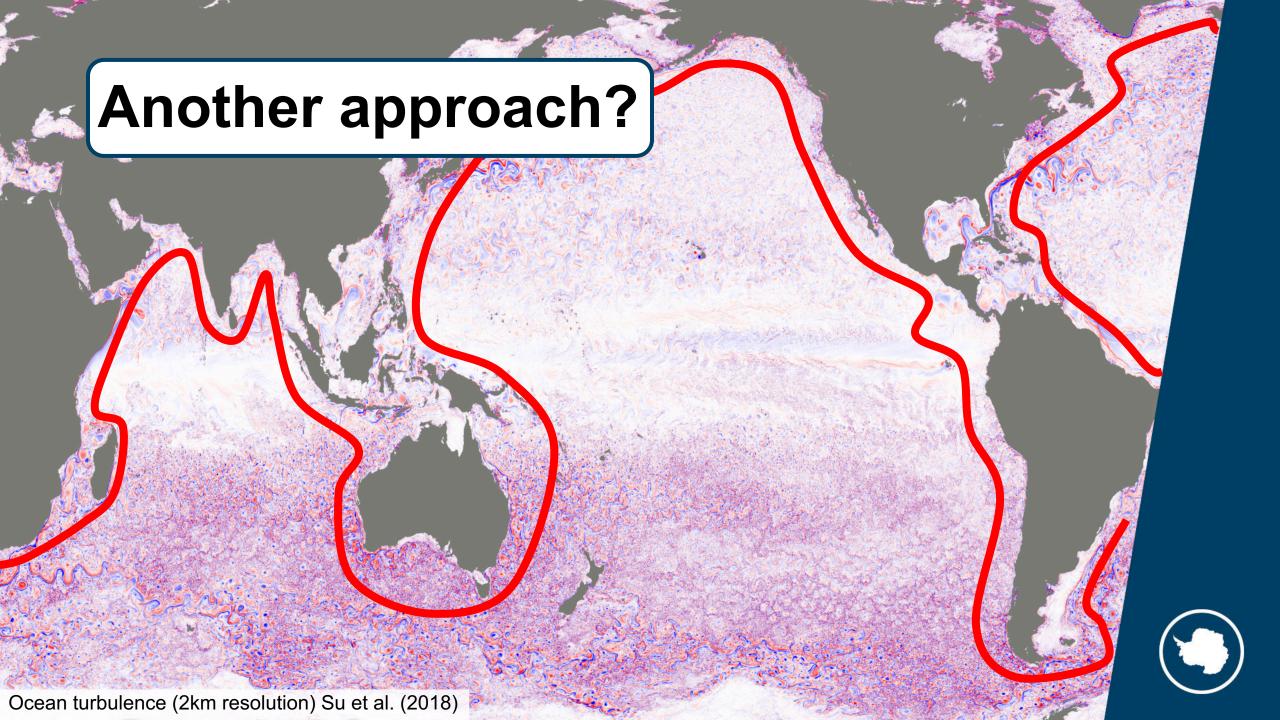


# An eddying ocean

In the ocean interior:

- Eddies dominate the variability almost everywhere [1]
- Particular sources of variability hard to disentangle from the eddy field
- Non-linear eddy interactions mediate currents on a timescale beyond the lifetime of a single eddy [2]





# Another approach?

#### Boundary pressures:

- Can describe variability of **global currents** such as the AMOC [3]
- Interannual to decadal variability is coherent over long distances (~10<sup>5</sup> km) [3]
- **Boundary** and **equatorial waves** provide high-speed pathways (~1 m s<sup>-1</sup>) to connect the basins on a **timescale** < 1 year [3,4,5]

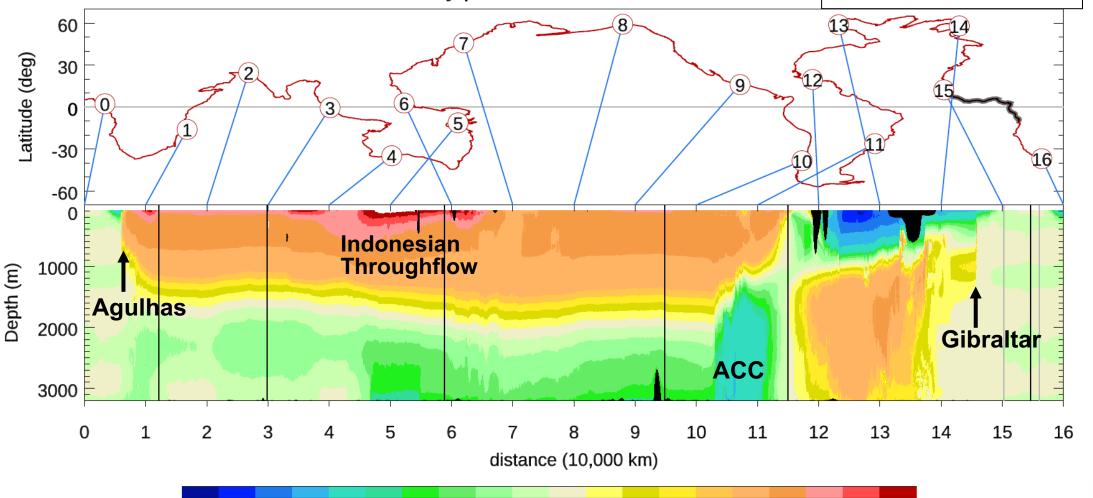


#### **Boundary Pressure Structure**

NEMO (ORCA12)

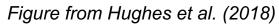
Eddy-rich forced model 54-year time-average

Boundary pressure relative to East Atlantic



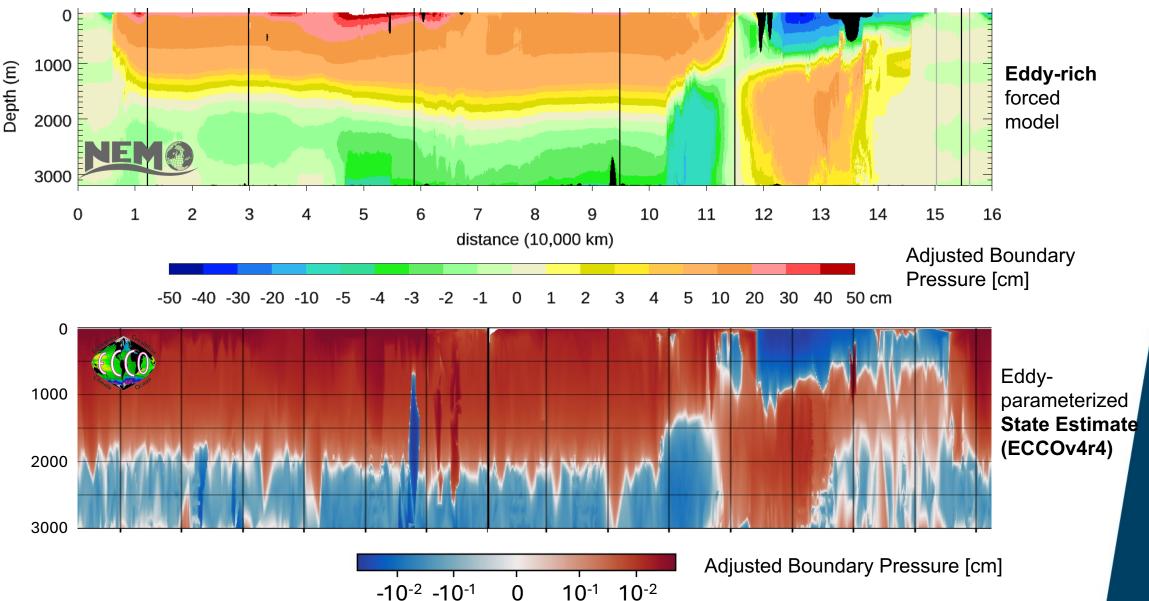
-50 -40 -30 -20 -10 -5 -4 -3 -2 -1 0 1 2 3 4 5 10 20 30 40 50 cm







#### **Boundary Pressure Structure**

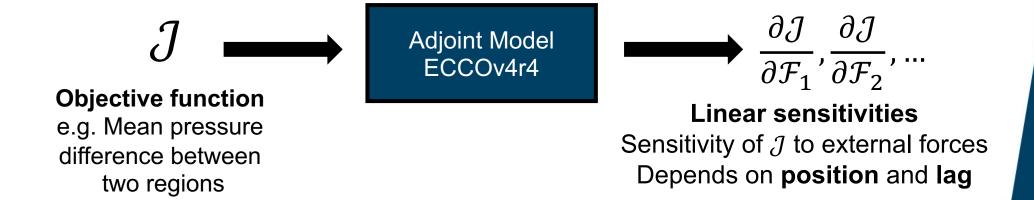




## **Adjoint models**

- Adjoint models effectively run "backwards"
- Relate ocean behaviors to physical causes in the past via automatic differentiation

Identify the linear sensitivities of an objective function



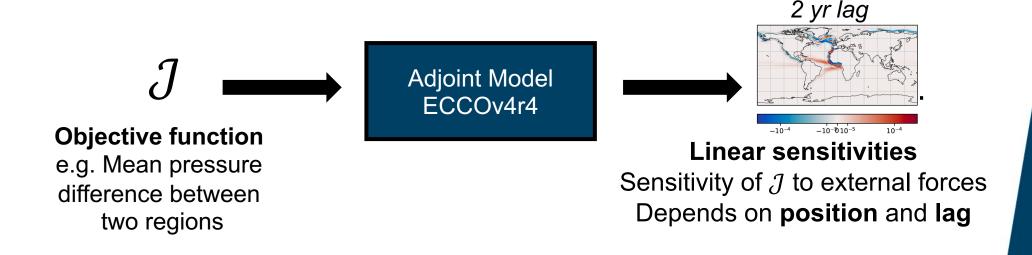


## Adjoint models

Adjoint models effectively run "backwards"

 Relate ocean behaviors to physical causes in the past via automatic differentiation

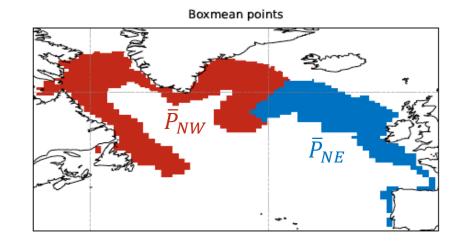
• Identify the linear sensitivities of an objective function



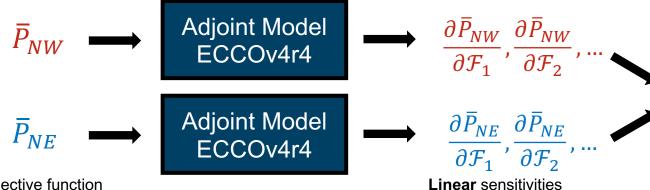


## Objective function for pressure difference

- Select 2 clusters of boundary grid points (e.g. figure)
- Select a time window (e.g. Jan ⇒ Dec 2008)
- **Bottom pressure** within each cluster is spatially and then temporally averaged (e.g.  $\overline{P}_{NW}$ ,  $\overline{P}_{NE}$ )
- The adjoint model calculates the linear sensitivities of each mean pressure to:



Example clusters in the NW Atlantic (Red) and NE Atlantic (Blue). Both clusters contain grid points with depths <= 3000 m within the approximate global 3000 m isobath

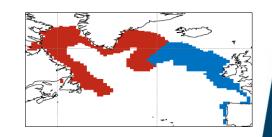


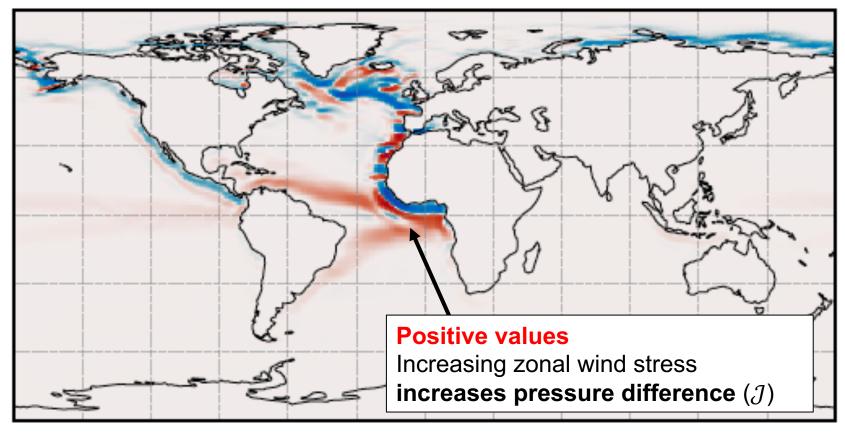
$$\frac{\partial (\bar{P}_{NW} - \bar{P}_{NE})}{\partial \mathcal{F}_1}, \frac{\partial (\bar{P}_{NW} - \bar{P}_{NE})}{\partial \mathcal{F}_2}, \dots$$
 Sensitivities of **Pressure Difference**

Depends on position and lag



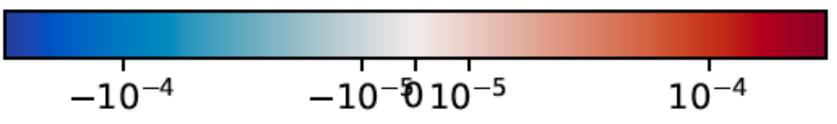
#### Sensitivity field: Zonal winds stress





Remember that sensitivity is a function of lag also

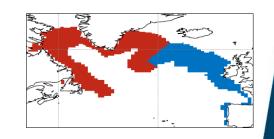
The shown sensitivity is for a value of lag where the pattern is particularly strong

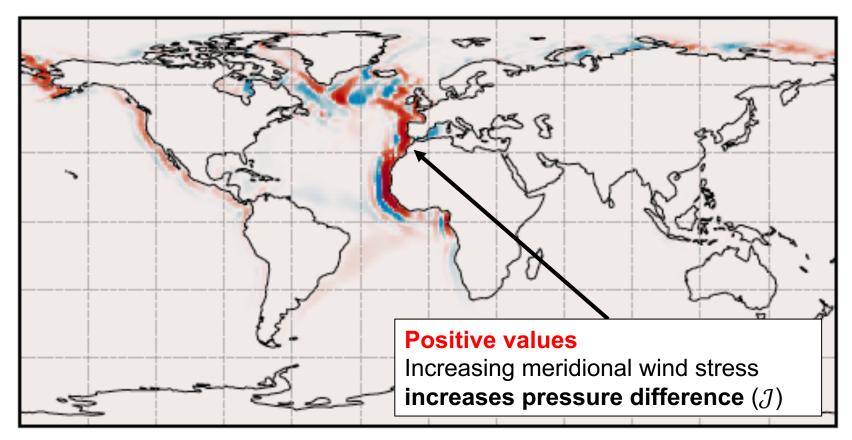


 $[m^2 s^{-2}] / [N m^{-2}]$ 



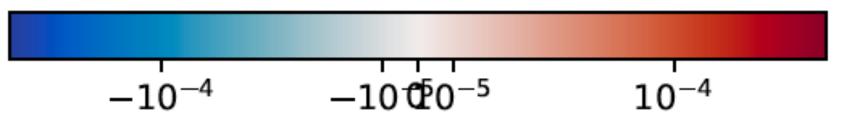
## Sensitivity field: Meridional Wind Stress





Remember that sensitivity is a function of lag also

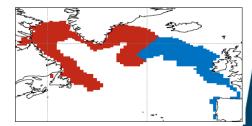
The shown sensitivity is for a value of lag where the pattern is particularly strong



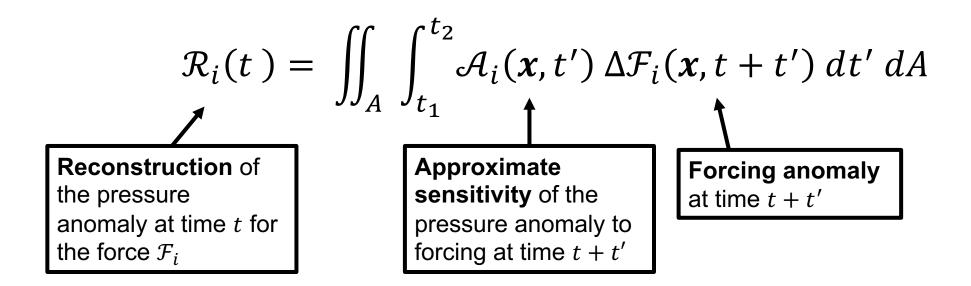
 $[m^2 s^{-2}] / [N m^{-2}]$ 



#### Reconstructions

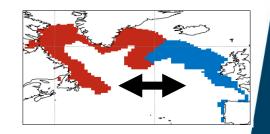


 The sensitivity fields can be convoluted with forcing anomalies (relative to climatology) to reconstruct a pressure anomaly time series



 In this reconstruction we assume the sensitivity is stationary (does not depend on absolute time)



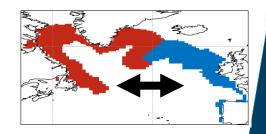


$$\mathcal{R}(t) = \sum_{i} \iint_{A} \int_{t_{1}}^{t_{2}} \mathcal{A}_{i}(\mathbf{x}, t') \, \Delta \mathcal{F}_{i}(\mathbf{x}, t + t') \, dt' \, dA$$

Reconstruction using all forces ( $\forall i$ ) and all available lag ( $t_1 = -5 \text{yrs}, t_2 = 0$ )

# $P_{NW}$ - $P_{NE}$ reconstruction





$$\mathcal{R}(t) = \sum_{i} \iint_{A} \int_{t_{1}}^{t_{2}} \mathcal{A}_{i}(\mathbf{x}, t') \, \Delta \mathcal{F}_{i}(\mathbf{x}, t + t') \, dt' \, dA$$

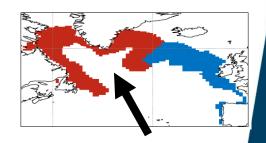
Reconstruction using all forces (  $\forall i$  ) and all available lag (  $t_1 = -5 \text{yrs}, \, t_2 = 0$  )



Objective function

Reconstruction



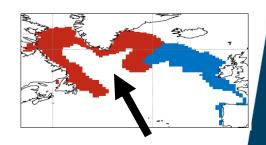


$$\mathcal{R}(t) = \sum_{i} \iint_{A} \int_{t_{1}}^{t_{2}} \mathcal{A}_{i}(\mathbf{x}, t') \, \Delta \mathcal{F}_{i}(\mathbf{x}, t + t') \, dt' \, dA$$

Reconstruction using all forces ( $\forall i$ ) and all available lag ( $t_1 = -5 \text{yrs}, t_2 = 0$ )

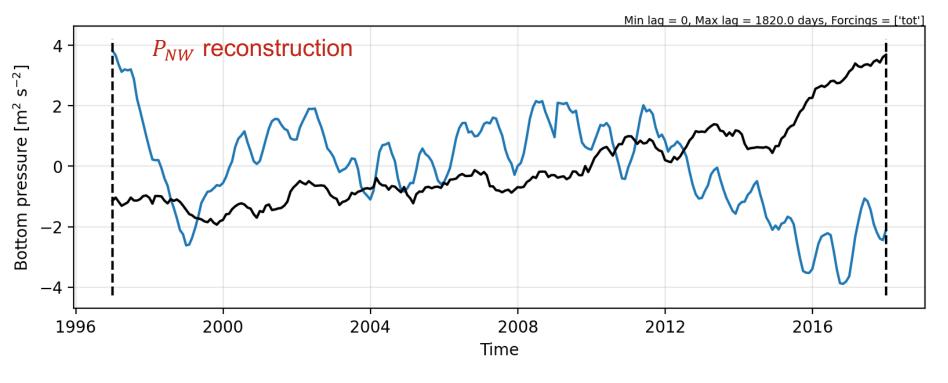
## $P_{NW}$ reconstruction





$$\mathcal{R}(t) = \sum_{i} \iint_{A} \int_{t_{1}}^{t_{2}} \mathcal{A}_{i}(\mathbf{x}, t') \, \Delta \mathcal{F}_{i}(\mathbf{x}, t + t') \, dt' \, dA$$

Reconstruction using all forces (  $\forall i$  ) and all available lag (  $t_1 = -5 \text{yrs}$ ,  $t_2 = 0$  )

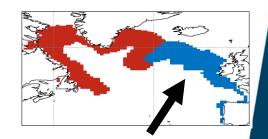


Reconstruction

Objective function





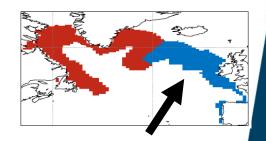


$$\mathcal{R}(t) = \sum_{i} \iint_{A} \int_{t_{1}}^{t_{2}} \mathcal{A}_{i}(\mathbf{x}, t') \, \Delta \mathcal{F}_{i}(\mathbf{x}, t + t') \, dt' \, dA$$

Reconstruction using all forces ( $\forall i$ ) and all available lag ( $t_1 = -5 \text{yrs}, t_2 = 0$ )

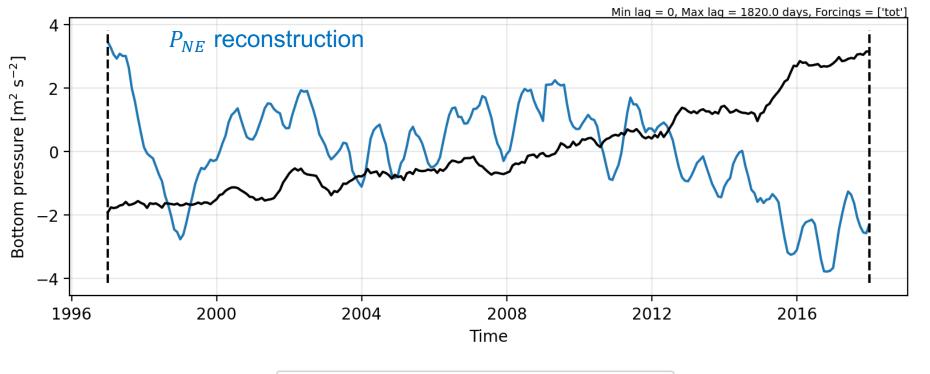
# $P_{NE}$ reconstruction





$$\mathcal{R}(t) = \sum_{i} \iint_{A} \int_{t_{1}}^{t_{2}} \mathcal{A}_{i}(\mathbf{x}, t') \, \Delta \mathcal{F}_{i}(\mathbf{x}, t + t') \, dt' \, dA$$

Reconstruction using all forces (  $\forall i$  ) and all available lag (  $t_1 = -5 \text{yrs}, \, t_2 = 0$  )



Reconstruction

Objective function





## **Explained variability**

**Explained variability** describes how much of the desired variability is captured by a reconstruction

$$E_i = 1 - \frac{\text{Var}(\mathcal{J} - \mathcal{R}_i)}{\text{Var}(\mathcal{J})}$$

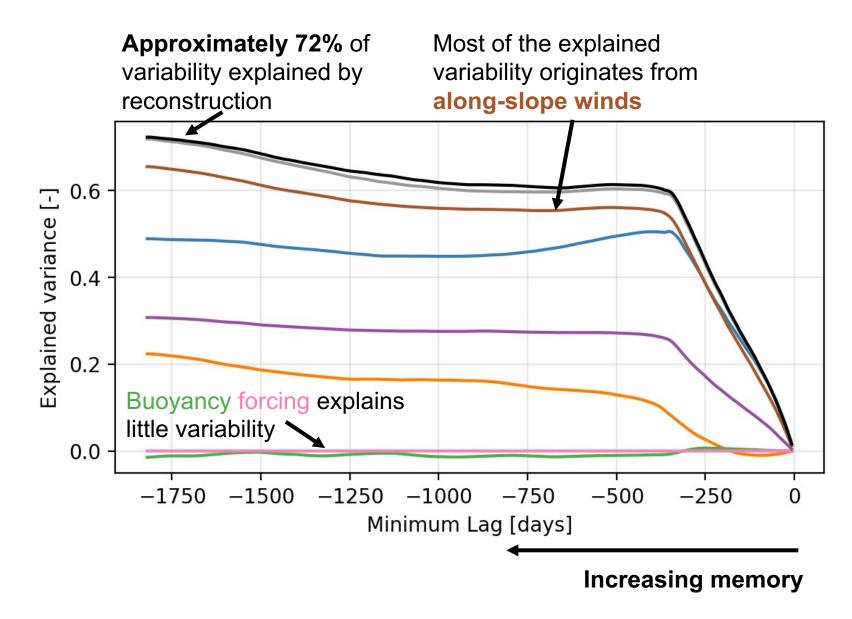
If E = 1 the variability is reconstructed perfectly If E < 0 the reconstruction is worse than assuming a constant value

A reconstruction can be modified by including **different forces** and different amounts of lag (**memory**)

Identifying the optimal combination of forces and memory indicates the **relevant forces** and **timescales**.



#### **Explained variability**



$$E_i = 1 - \frac{\text{Var}(\mathcal{J} - \mathcal{R}_i)}{\text{Var}(\mathcal{J})}$$

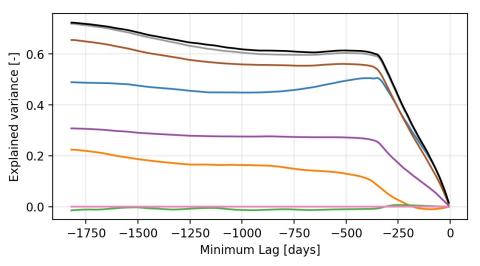
#### **Forcing**

Zonal wind stress
Meridional wind stress
Heat flux
Freshwater flux
Along-slope winds
Down-slope winds
All wind stress
All forces



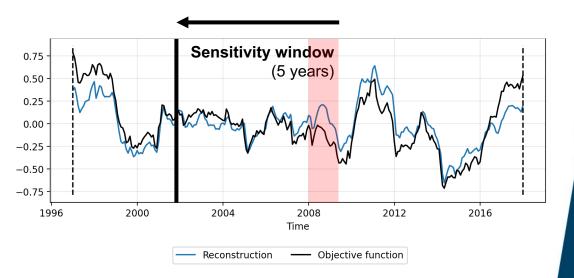
## Where is the remaining variability?

- Longer lags may be necessary ( > 5-year memory)
- Non-linear sensitivities of the pressure difference may also be significant
- Assuming sensitivities are stationary may also produce errors



#### Forcing

Zonal wind stress
Meridional wind
stress
Heat flux
Freshwater flux
Along-slope winds
Down-slope winds
All wind stress
All forces





## Where is the remaining variability?

errors

Longer lags may be necessary ( > 5-year memory)
 Extend adjoint runs to 10-20 years

Non-linear sensitivities of the pressure difference may also be significant

Perform forward perturbation experiments

• Assuming sensitivities are stationary may also produce Calculate sensitivities centered on a different time

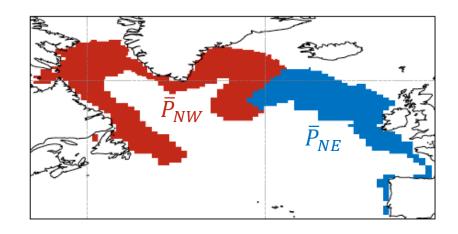


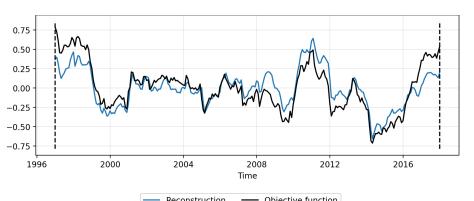
#### **Conclusions**

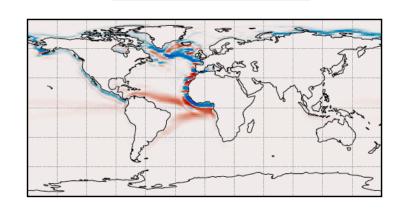
 Components of variability in large scale circulations (e.g. MOC) can be described by boundary pressure differences.

 In this case study, we can reconstruct 72% of the pressure difference variability in the North Atlantic

 Most of the explained variability originates from along-slope winds





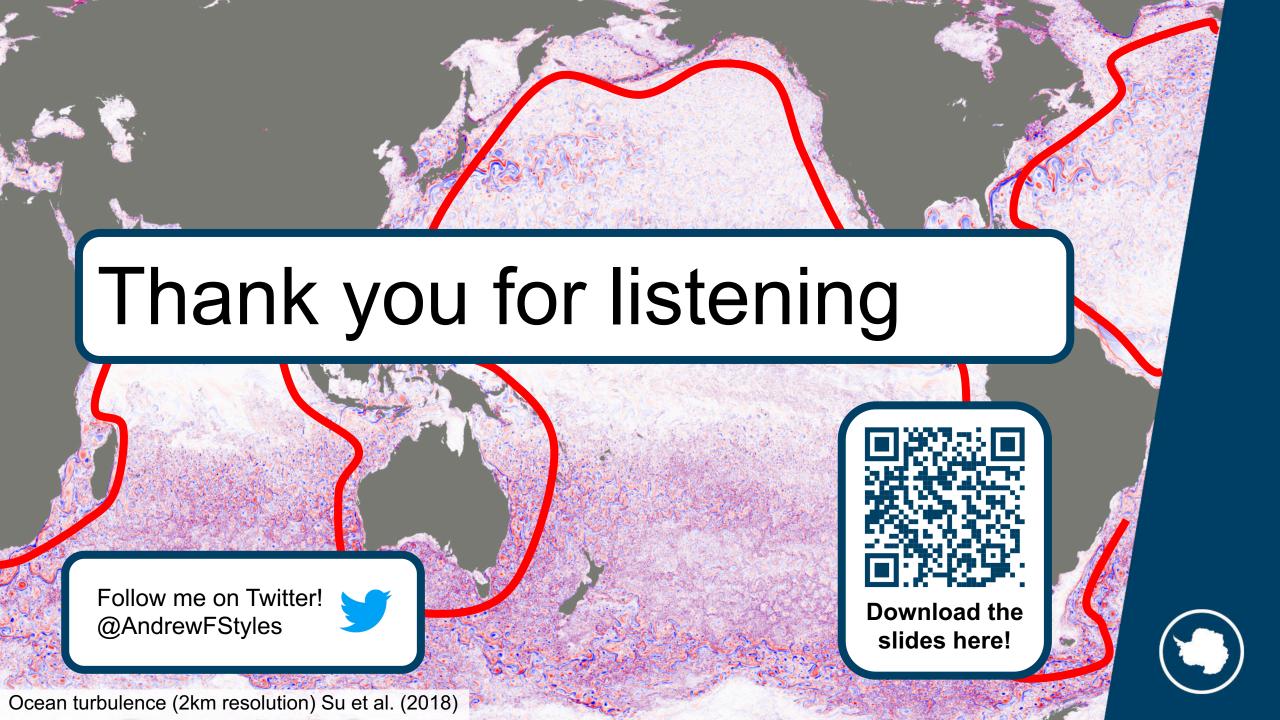


-10<sup>-</sup>₹0 10<sup>-5</sup>

 $-10^{-4}$ 

 $10^{-4}$ 





#### References



[1] Wunsch, C. (2008). Mass and volume transport variability in an eddy-filled ocean. *Nature Geoscience*, 1(3), 165–168. <a href="https://doi.org/10.1038/ngeo126">https://doi.org/10.1038/ngeo126</a>

[2] Close, S., Penduff, T., Speich, S., & Molines, J.-M. (2020). A means of estimating the intrinsic and atmospherically-forced contributions to sea surface height variability applied to altimetric observations. *Progress in Oceanography*, 184, 102314. <a href="https://doi.org/10.1016/j.pocean.2020.102314">https://doi.org/10.1016/j.pocean.2020.102314</a>

[3] Hughes, C. W., Williams, J., Blaker, A., Coward, A., & Stepanov, V. (2018). A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation. *Progress in Oceanography*, 161, 19–46. <a href="https://doi.org/10.1016/j.pocean.2018.01.011">https://doi.org/10.1016/j.pocean.2018.01.011</a>

[4] Hughes, C. W., Fukumori, I., Griffies, S. M., Huthnance, J. M., Minobe, S., Spence, P., Thompson, K. R., & Wise, A. (2019). Sea Level and the Role of Coastal Trapped Waves in Mediating the Influence of the Open Ocean on the Coast. *Surveys in Geophysics*, *40*(6), 1467–1492. <a href="https://doi.org/10.1007/s10712-019-09535-x">https://doi.org/10.1007/s10712-019-09535-x</a>

[5] Marshall, D. P., & Johnson, H. L. (2013). Propagation of Meridional Circulation Anomalies along Western and Eastern Boundaries. *Journal of Physical Oceanography*, 43(12), 2699-2717. <a href="https://doi.org/10.1175/JPO-D-13-0134.1">https://doi.org/10.1175/JPO-D-13-0134.1</a>



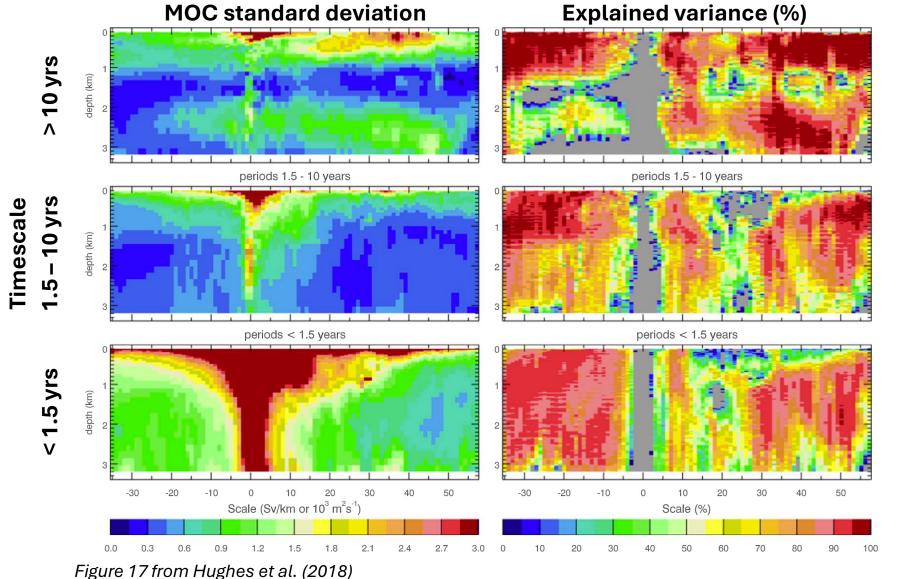
# Extra Slides



## **Explained variability of the MOC**

#### **NEMO (ORCA12)**

Eddy-rich forced model 54-year time-average

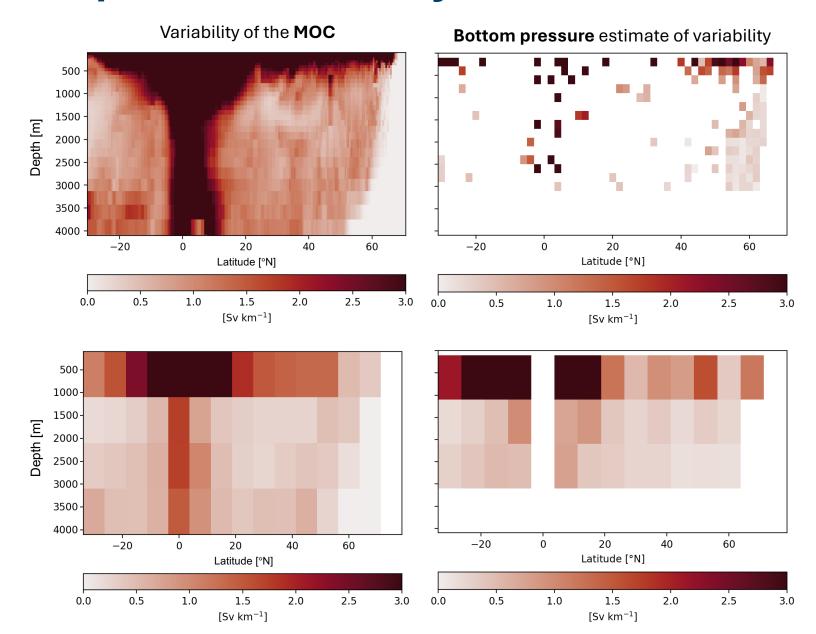


$$fT(z,y) = p_E - p_W$$

MOC calculation from **geostrophic** assumptions



## **Explained variability of the MOC**



#### **NEMO (ORCA12)**

Eddy-rich forced model 54-year time-average

$$fT(z,\phi)=p_E-p_W$$

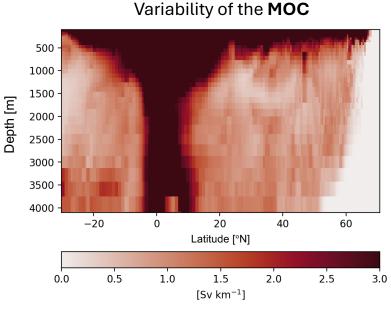
MOC calculation from **geostrophic** assumptions

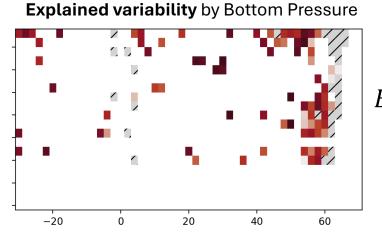


## **Explained variability of the MOC**

#### **NEMO (ORCA12)**

Eddy-rich forced model 54-year time-average





0.4

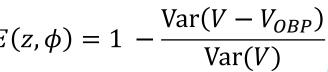
[-]

0.6

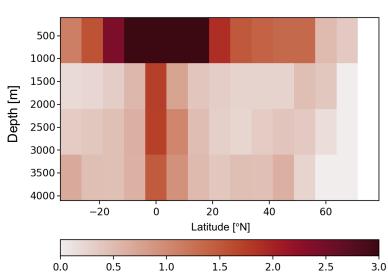
8.0

0.2

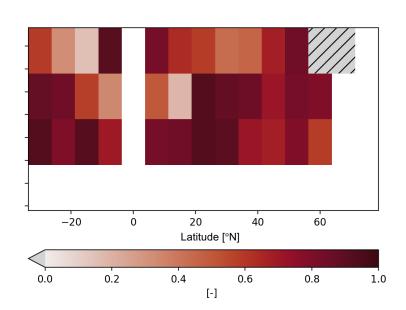
0.0



**Explained variability** 



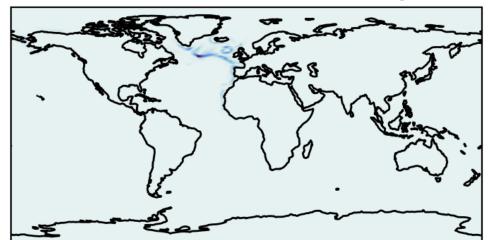
[Sv km<sup>-1</sup>]

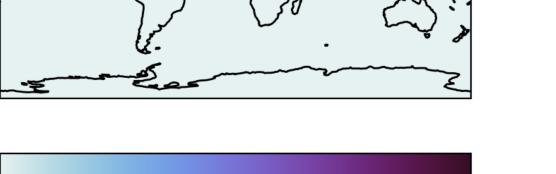


Variability of the MOC is well-explained by Bottom Pressure differences

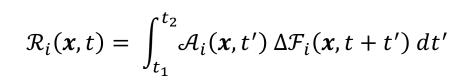


wnd: Constructed Variability



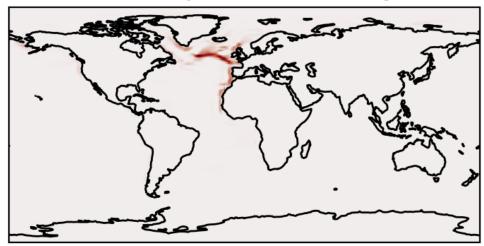


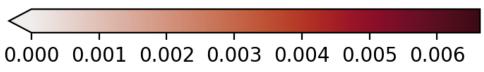
1e-6



$$E_i(\mathbf{x},t) = 1 - \frac{Var(\mathcal{J} - \mathcal{R}(\mathbf{x},t))}{Var(\mathcal{J})}$$

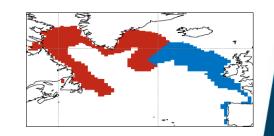
#### wnd: Explained Variability

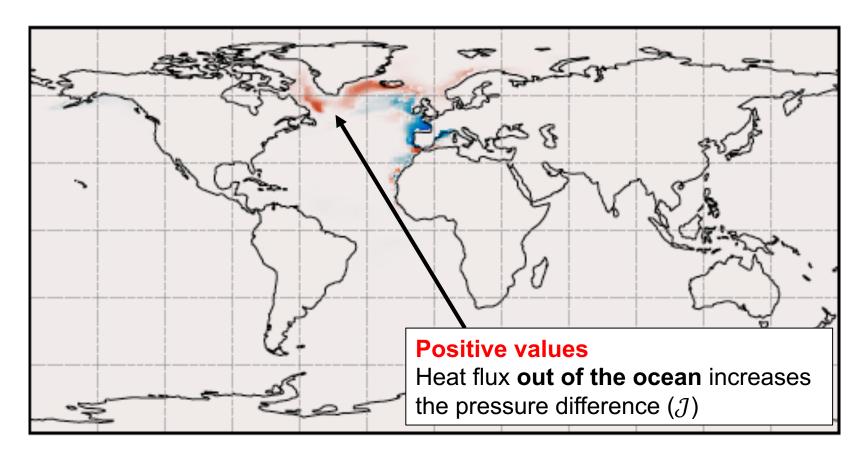






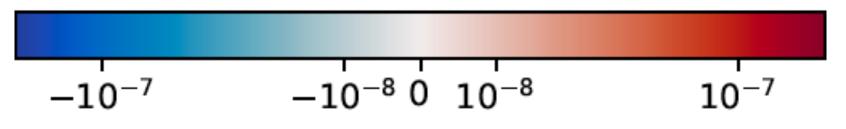
## **Sensitivity field: Heat flux**





Remember that sensitivity is a function of lag also

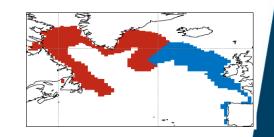
The shown sensitivity is for a value of lag where the pattern is particularly strong

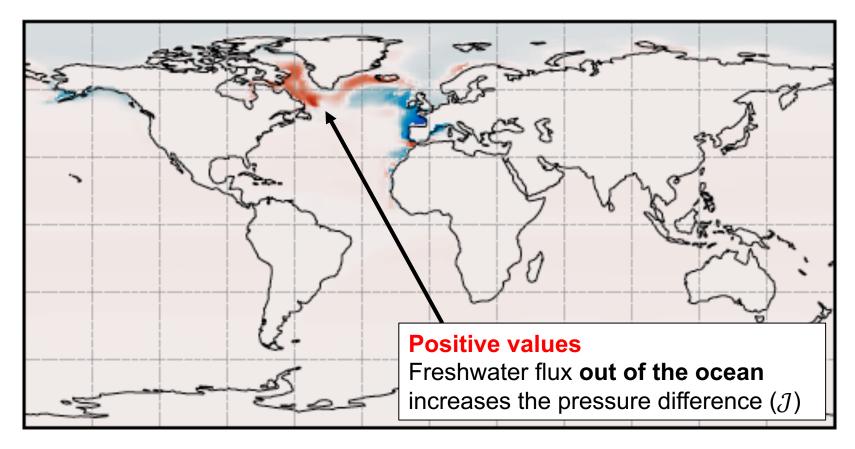


[m<sup>2</sup> s<sup>-2</sup>] / [W m<sup>-2</sup>]



## Sensitivity field: Freshwater flux





Remember that sensitivity is a function of lag also

The shown sensitivity is for a value of lag where the pattern is particularly strong



 $[m^2 s^{-2}] / [m^{-1}]$ 

